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We show that the spin density generalization of the AM05 density functional �R. Armiento and A. E.
Mattsson, Phys. Rev. B 72, 085108 �2005�� predicts the correct ground spin state for iron, a system known to
be heavily dependent on proper spin treatment. Using the fundamental assumptions in the subsystem functional
scheme, we resolve an ambiguity in how to treat the separate spin densities in AM05 but also show that the
other less preferred treatments give no significantly different numerical outcome of the iron body-centered-
cubic and face-centered-cubic test cases. Details and formulas are given to aid in the implementation of
functionals in general, and the spin-resolved AM05 exchange-correlation potentials in particular, into different
types of computer codes.
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I. INTRODUCTION

Due to its ability to treat a wide range of systems fairly
accurately at relatively low computational cost, density-
functional theory �DFT� �Refs. 1 and 2� and its spin
formulation3,4 has become the foundation of most large scale
quantum-mechanical simulations. The key to accuracy in
DFT based simulations is the approximation made for the
exchange-correlation density functional.

A number of recent studies have confirmed the excellent
performance of the AM05 functional5 for nonmagnetic
solids.6 Furthermore, Ropo et al.7 recently investigated a
limited set of properties also of magnetic solids using a spin-
resolved version of AM05 �the xscst version discussed in
Sec. II�. Recent work by Haas et al.8 confirms the findings in
Refs. 6 and 7. The present paper presents the necessary de-
tails in the derivation of spin-resolved AM05 and discusses
its implementation into various types of computer codes. In
addition, we test the spin-resolved functional for proper pre-
diction of body-centered-cubic �bcc� and face-centered-cubic
�fcc� phases of iron. This is a classical test case, for which
the local spin density approximation �LSDA� fails to give the
correct ground spin state while, e.g., the Perdew, Burke, and
Ernzerhof �PBE� functional9 reproduces it correctly.

In Sec. II we give an overview of the AM05 density func-
tional from the subsystem functional viewpoint and we de-
rive several forms of AM05 that naturally extends its use to
systems where a spin-resolved electron density is needed for
proper treatment. The best form to use is identified based on
fundamental subsystem functional principles. Section III dis-
cusses the general implementation of spin-resolved function-
als in different types of codes currently in use, and we give
specific formulas for the spin-resolved AM05. Section IV
gives the results of benchmark tests on iron with the positive
result that spin-resolved AM05 correctly identifies the
ground spin state. We summarize and discuss our findings in
Sec. V.

II. AM05 AND SPIN

The AM05 functional5 consists of a subsystem
functional10,11 for interior regions, a subsystem functional for

edge regions, and an interpolation index that in each point in
a system determines the ratio of edge and interior functionals
to use. A subsystem functional is designed to properly treat a
particular type of physical situation. AM05 thus combines a
treatment based on the uniform electron gas, describing a
situation where electrons are free to move in all directions,
appropriate for interior regions, with a treatment of a very
different edgelike situation, where electrons are confined by
a surface, restricting their motion in one direction. AM05 is
using only the density, n�r�, and the magnitude of its gradi-
ent, ��n�r��, to determine the contribution to the total
exchange-correlation energy in each point, r, of the system,
just as common generalized gradient approximation �GGA�
functionals do.

As the interior region functional, the local-density ap-
proximation �LDA� �Ref. 2� with the Perdew-Wang �PW�
�Ref. 12� parametrization of the Ceperly-Alder data13 for cor-
relation is used, �c

LDA�n�=�c
PW�n�:

�xc
interior�n� = �x

LDA�n� + �c
LDA�n� . �1�

As edge region functional, an exchange derived from the
Airy Gas system5,14 �the local Airy approximation �LAA�� is
used together with a scaled PW LDA correlation:

�xc
edge�n� = �x

LAA�n,s� + ��c
LDA�n� � = 0.8098, �2�

where

s = s�n, ��n�� =
��n�

2kF�n�n
, kF�n� = �3�2n�1/3 �3�

is a dimensionless scaled gradient also used by many other
GGA-type functionals, and we have suppressed the r depen-
dence of the density; n=n�r�.

The interpolation index,

X�s� =
1

1 + �s2 , � = 2.804, �4�

is only dependent on s, and determines the ration of edge vs
interior functional to use in each point: X�0�=1, X�s�→0
when s→�, and
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�xc
AM05�n,s� = �xc

interior�n�X�s� + �xc
edge�n,s��1 − X�s�� . �5�

Surface physics is included in AM05 by the use of the Airy
gas system, and by the constants � and � determined from a
fit to the jellium surface15 RPA+ �Ref. 16� exchange-
correlation energies that are close to the recently published,
to date most accurate, inhomogeneous Singwi-Tosi-Land-
Sjölander energies.17

The nonspin-polarized total AM05 exchange-correlation
energy, Exc

AM05, is

Exc
AM05 =� n�r��xc

AM05
„n�r�,s�r�…dr , �6�

=� fxc
AM05

„n�r�,s�r�…dr . �7�

We note that the functional, or the exchange-correlation en-
ergy per particle, �xc, in each point is multiplied by the den-
sity in this point to obtain the exchange-correlation energy
density, fxc.

The exchange-correlation energy densities obtained from
the separate subsystem functionals in Eqs. �1� and �2� can
unambiguously be made spin-resolved by using the spin
scaling for the total exchange energy:

Ex�n↑,n↓� =
1

2
�Ex�2n↑� + Ex�2n↓�� , �8�

and replacing the nonspin PW LDA correlation density with
its spin-resolved form, fc

LDA�n↑ ,n↓�= �n↑+n↓��c
LDA�n↑ ,n↓�.

However, a slight ambiguity is introduced by the interpola-
tion index, a unique feature of AM05, which necessitate
a more elaborate exploration than is usual for GGAs in
general.

If one lets the mixing between the spin-resolved versions
of the interior and edge subsystem functionals still be deter-
mined by the total density and its scaled gradient via s
=s�n , ��n�� and X�s�, as in Eq. �5�, one obtains a version we
will refer to as xtctt. This and other upcoming acronyms are
constructed to indicate whether the t�otal or separate s�pin
densities determine the interpolation index for ex�change and
c�orrelation while the last letter indicates if the translation
from correlation energy per particle to correlation energy
density is via total or spin densities. The xtctt thus denotes
that the t�otal density determines the interpolation for both
ex�change and c�orrelation, and the correlation energy per par-
ticle is multiplied by the total density to obtain the correla-
tion energy density:

fxc
xtctt�n↑,n↓,s↑,s↓,s�

= �1

2
�fx

LDA�2n↑� + fx
LDA�2n↓�� + fc

LDA�n↑,n↓��X�s�

+ �1

2
�fx

LAA�2n↑,s↑� + fx
LAA�2n↓,s↓�� + �fc

LDA�n↑,n↓��
��1 − X�s�� , �9�

where fx
LDA�n�=n�x

LDA�n�, fx
LAA�n ,s�=n�x

LAA�n ,s�, and, using
Eq. �3�, we have defined

s� = s�2n�, ���2n���� � = ↑,↓ . �10�

However, this version leads to a total AM05 exchange energy
that does not obey the exact exchange spin-scaling relation,
Eq. �8�.

A version of spin-polarized AM05 that obeys the ex-
change spin-scaling relation can be created by instead using
separate indices for the spin-up �X�s↑�� and spin-down
�X�s↓�� exchange energy densities. This is the xsctt version
�ex�change interpolation is determined from the separate s�pin
densities�:

fxc
xsctt�n↑,n↓,s↑,s↓,s� =

1

2
�fx

LDA�2n↑�X�s↑� + fx
LDA�2n↓�X�s↓�� + fc

LDA�n↑,n↓�X�s�

+
1

2
	fx

LAA�2n↑,s↑��1 − X�s↑�� + fx
LAA�2n↓,s↓��1 − X�s↓��
 + �fc

LDA�n↑,n↓��1 − X�s�� . �11�

The xsctt version of AM05 fulfills the spin-scaling relation, Eq. �8�, but violates a fundamental principle of the subsystem
functional scheme, the compatibility between exchange and correlation. Compatibility in this context requires that in each
point in a system the exchange energy density needs to be combined with a correlation energy density based on the same
model system as exchange. Since the amount of interior vs edge exchange and correlation in the xsctt version is determined
with different indices, the total contribution in a point is not derived from the same model system. To restore the compatibility
we need to use the same indices we use for exchange also for correlation. This version is xscst:

fxc
xscst�n↑,n↓,s↑,s↓� = �n↑�x

LDA�2n↑� +
n↑ + n↓

2
�c

LDA�n↑,n↓��X�s↑� + �n↑�x
LAA�2n↑,s↑� +

n↑ + n↓
2

��c
LDA�n↑,n↓���1 − X�s↑��

+ �n↓�x
LDA�2n↓� +

n↑ + n↓
2

�c
LDA�n↑,n↓��X�s↓� + �n↓�x

LAA�2n↓,s↓� +
n↑ + n↓

2
��c

LDA�n↑,n↓���1 − X�s↓�� .

�12�
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Since the two separate interpolation indices used in xscst
are constructed from the respective spin-up and spin-down
densities, the extent to which the physics in a specific point
is interpreted as edgelike or interiorlike is in the general case
different for the two spin channels, i.e., X�s↑��X�s↓�. A
physical motivation for such separate environments over the
joint treatment in xtctt is seen in, e.g., a strongly magnetic
situation where one should expect the surface that confines
spin-up and spin-down electrons to be placed differently.

The separate indices introduce a correlation energy per
particle that is not the same for the spin-up and spin-down
electrons, reflecting the possibility that spin-up and spin-
down electrons in a point actually can experience different
physical environments: the spin-up electrons could be at a
surface while the spin-down electrons could be freely mov-
ing as in an interior region. This is different from the case of
most other functionals where the correlation energy per par-
ticle is usually determined by the total density and the rela-
tive spin polarization in a point, resulting in spin-up and
spin-down particles contributing the same correlation energy
per particle to the correlation energy density and the total
correlation energy. The compatibility foundation of the sub-
system functional scheme thus makes it natural to instead
translate the correlation energy per particle into a correlation
energy density by multiplying the separate spin-up and spin-
down parts of the correlation energy per particle with the
spin-up/spin-down densities, respectively. We call this ver-
sion for xscss:

fxc
xscss�n↑,n↓,s↑,s↓�

= �n↑�x
LDA�2n↑� + n↑�c

LDA�n↑,n↓��X�s↑�

+ �n↑�x
LAA�2n↑,s↑� + n↑��c

LDA�n↑,n↓���1 − X�s↑��

+ �n↓�x
LDA�2n↓� + n↓�c

LDA�n↑,n↓��X�s↓�

+ �n↓�x
LAA�2n↓,s↓� + n↓��c

LDA�n↑,n↓���1 − X�s↓�� .

�13�

By considering a fully spin-polarized system, that is, a
system where one of the spin densities is zero everywhere,
we can further clarify this argument. In such a system the
total correlation energy should be determined only by the
nonzero spin density profile and the nonzero spin density
based interpolation. However, since the correlation energy
per particle is nonvanishing also for the nonexisting elec-
trons, in xscst �Eq. �12��, the multiplication with the total
density will give a nondesired contribution to the total cor-
relation energy while in xscss �Eq. �13�� the multiplication
with the zero density will result in no contribution. The xscss
version is the final version of the AM05 spin functional and
the arguments based on fundamental subsystem functional
principles given here for this choice over other possible
choices resolve the apparent ambiguity of how to handle the
interpolation index in a spin-resolved version of AM05.

As seen in Eq. �13�, the spin AM05 functional consists of
a subsystem functional for interior regions and a subsystem
functional for edge regions. The spin-up density and spin-
down density form separate density profiles, and separate
indices are used for the separate density profiles to determine

the ratio of interior vs edge functional to use.
Using that �x

LAA�n ,s�=�x
LDA�n�Fx

LAA�s� �see Ref. 5�, the
AM05 exchange-correlation energy density in Eq. �13� can
be written on the form

fxc
AM05�n↑,n↓, ��n↑�, ��n↓��

= n↑�x
LDA�2n↑�Hx�s↑� + n↓�x

LDA�2n↓�Hx�s↓�

+ n↑�c
LDA�n↑,n↓�Hc�s↑� + n↓�c

LDA�n↑,n↓�Hc�s↓� ,

�14�

where

Hx�s� = X�s� + �1 − X�s��Fx
LAA�s� , �15�

Hc�s� = X�s� + �1 − X�s��� . �16�

III. IMPLEMENTING AM05

It is straightforward to implement the AM05 exchange-
correlation energy directly from Ref. 5 and Eq. �14�, the only
minor obstacle being the need for a subroutine for calculat-
ing the Lambert W function18 used in Fx

LAA�s�. At the AM05
website19 a subroutine for calculating the AM05 exchange-
correlation energy is provided �including subroutines for the
required Lambert W function and the LSDA correlation in
the parametrization of Perdew and Wang12,13�. The 35 line
subroutine for the Lambert W function is also provided as
supplemental material to this paper.20

In this section and Appendix B, however, we will explic-
itly give all formulas needed for implementing AM05, and
for understanding the subroutines we provide at the AM05
website.19 In particular, we will give all necessary formulas
for the exchange-correlation potentials needed for self-
consistent DFT implementations.

The most elaborate part of an AM05 implementation is
the LAA refinement factor, Fx

LAA�s�. From its definition in
Eq. 8 in Ref. 5 we obtain

Fx
LAA�s� =

cs2 + 1

D�s�
, �17�

D�s� = csA�s� + 1, �18�

A�s� =
3

�
�̃�s�1/2��4

3
�1/32�

3
�4

�̃�s�2 + �̃�s�4�1/4

= 2�4

3
�1/3

�̃�s��1 +  27

32�2�22�4

3
�1/3

�̃�s��2�1/4

= Z�s�	1 + �kZ�s��2
1/4, where k =
27

32�2 , �19�

�̃�s� = 3

2
W� s3/2

2�6
��2/3

=
1

2�3

4�1/3
Z�s� , �20�

Z�s� = sW„	�s�…
	�s� �2/3

= constant � �W„	�s�…�2/3, �21�
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	�s� =
s3/2

2�6
, �22�

where c=0.7168, and Z�s� is a normalized function �it is easy
to verify that Z�s� /s→1 when s→0� defined by Eq. �21�
which contains the Lambert W function and that it is conve-
nient to use in implementations of AM05.

However, in self-consistent DFT calculations, not only is
the exchange-correlation energy density needed but also the
exchange-correlation potential for the spin-up electrons, the
functional derivative of the exchange-correlation energy with
respect to spin-up density, and its spin-down counter part:

Vxc,� =

Exc


n�

� = ↑,↓ . �23�

There are several different schemes for calculating the
exchange-correlation potentials within a code, and in this
section we will give the formulas needed for the White and

Bird21 scheme, and the fully assembled exchange-correlation
potentials �that we call the traditional scheme�. A short over-
view of the different schemes for calculating the exchange-
correlation potentials, including information on how to trans-
fer the White and Bird expressions here given into the input
needed for the Pople, Gill, and Johnson22 scheme, and de-
tailed derivations, applicable also for other GGA-type func-
tionals, are given in Appendix B.

Generally for a GGA-type functional the White and
Bird scheme needs the five quantities

�fxc�n↑,n↓,��n↑�,��n↓�,��n��
�n↑

,
�fxc�n↑,n↓,��n↑�,��n↓�,��n��

�n↓
,

�fxc�n↑,n↓,��n↑�,��n↓�,��n��
���n↑�

,
�fxc�n↑,n↓,��n↑�,��n↓�,��n��

���n↓�
, and

�fxc�n↑,n↓,��n↑�,��n↓�,��n��
���n� . Since AM05

does not use ��n�, we immediately see that

� fxc
AM05�n↑,n↑, ��n↑�, ��n↓��

� ��n�
= 0. �24�

The remaining four quantities are

� fxc
AM05�n↑,n↑, ��n↑�, ��n↓��

�n�a

= vx
LDA�2n�a

�Hx�s�a
� −

4

3
�x

LDA�2n�a
�s�a

�Hx�s�a
�

�s�a

+ vc,�a

LDA�n↑,n↓�
1

�n↑ + n↓�
�n↑Hc�s↑� + n↓Hc�s↓��

+ �c
LDA�n↑,n↓�

n�b

�n↑ + n↓�
�Hc�s�a

� − Hc�s�b
�� −

4

3
�c

LDA�n↑,n↓�s�a

�Hc�s�a
�

�s�a

, �25�

and

� fxc
AM05�n↑,n↑, ��n↑�, ��n↓��

� ��n�a
�

=
�x

LDA�2n�a
�

2kF,�a

�Hx�s�a
�

�s�a

+
�c

LDA�n↑,n↓�
2kF,�a

�Hc�s�a
�

�s�a

, �26�

where �a=↑ or ↓, and �b denotes the opposite spin to �a. We have defined kF,�=kF�2n��, and vx
LDA�2n�� is the LDA exchange

potential, and vc,�
LDA�n↑ ,n↓� is the LDA correlation potential for the � spin. The explicit formulas for the derivatives of Hx�s� and

Hc�s� are given in Appendix B.
In the traditional scheme, in addition to s�, �= ↑ ,↓, given in Eq. �10�, four other dimensionless density derivatives are used:

t� =
�2�2n��

�2kF,��2�2n��
and u� =

��2n�� · ����2n���
�2kF,��3�2n��2 . �27�

The full explicit exchange-correlation potentials are

Vxc,�a

AM05 = vx
LDA�2n�a

�Hx�s�a
� − s�a

�Hx�s�a
�

�s�a

� + �x
LDA�2n�a

���4

3
s�a

2 − t�a� 1

s�a

�Hx�s�a
�

�s�a

+ �4

3
s�a

3 − u�a� �

�s�a

 1

s�a

�Hx�s�a
�

�s�a

��
+ vc,�a

LDA�n↑,n↓��Hc�s�a
� − s�a

�Hc�s�a
�

�s�a

� + �c
LDA�n↑,n↓���4

3
s�a

2 − t�a� 1

s�a

�Hc�s�a
�

�s�a

+ �4

3
s�a

3 − u�a� �

�s�a

 1

s�a

�Hc�s�a
�

�s�a

��
+ ��c

LDA�n↑,n↓� − vc,�a

LDA�n↑,n↓��
n�b

n↑ + n↓
Hc�s�a

� − Hc�s�b
� − s�a

�Hc�s�a
�

�s�a

�
+ ��c

LDA�n↑,n↓� − vc,�b

LDA�n↑,n↓��
�n↑ · �n↓

��n�a
�2

n�a

n↑ + n↓
s�a

�Hc�s�a
�

�s�a

. �28�
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Again, �a=↑ or ↓, and �b denotes the opposite spin to �a. A
detailed derivation of Eq. �28�, and formulas for the deriva-
tives of Hx�s� and Hc�s�, are given in Appendix B. Note that
even though the AM05 functional itself is not dependent on
the total density gradient, this gradient is indeed present in
the full correlation potential via the quantity �n↑ ·�n↓
= ���n�2− ��n↑�2− ��n↓�2� /2. This have no bearing on the
implementation of AM05 since the magnitude of the gradient
of the total density is used in ordinary PBE �Ref. 9� correla-
tion while the magnitude of the gradients of the separate
spin-up and spin-down densities are used in PBE exchange.
As is the case with AM05 potentials obtained by the White
and Bird, and the Pople, Gill, and Johnson schemes, AM05
potentials via the traditional scheme can thus be readily
implemented in every code already containing PBE. Note
that if exchange and correlation are treated separately in a
code, it could be more convenient to include the last part of
second line in Eq. �28� into the exchange part than the cor-
relation part since ordinary GGA exchange �see last part of
first line in Eq. �28�� already uses the needed density deriva-
tive quantities t� and u�.

IV. AM05 RESULTS FOR Fe

We have investigated the spin version of AM05 by per-
forming nonspinresolved and spin-resolved calculations for

the bcc and fcc phases of iron, using VASP.23 As is described
in Refs. 6 and 24, in VASP 5 existing projector augmented
wave �PAW� potentials can be used together with functionals
they are not created with. Note that this is not generally true
for other implementations of the PAW potentials and other
types of pseudopotentials but must be tested thoroughly from
case to case. Further details of our calculations are given in
Appendix A.

Figures 1 and 2 show that minimal differences are ob-
tained in AM05 results using LDA or PBE PAW potentials. It
is clearly seen that AM05 obtains the correct ground state,
the ferromagnetic bcc phase. Interestingly also the differ-
ences between the four different spin versions are very small,
as seen in Figs. 3 and 4. In particular, there are no differences
in lattice constants, bulk moduli, and magnetizations, in the
bcc ground state, see Table I. The main difference is instead
the energy difference between states with widely different
magnetizations, such as nonmagnetic fcc and magnetic bcc, a
property that is hard to derive from experiments. This will be
investigated and discussed in future publications.
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FIG. 1. �Color online� Energy vs volume for non-magnetic
�NM� and ferro-magnetic �FM� phases of bcc and fcc iron, calcu-
lated with AM05.
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FIG. 2. �Color online� Magnetization vs volume for the FM
phases of bcc and fcc iron, calculated with AM05.
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FIG. 3. �Color online� Energy vs volume for NM and FM phases
of bcc and fcc iron, calculated with the AM05 functional and three
intermediate spin versions. All spin versions give the same results
when the magnetization is zero, when they all collapse to the unique
nonspin version of AM05.
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FIG. 4. �Color online� Magnetization vs volume for the FM
phases of bcc and fcc iron, calculated with the AM05 functional and
three intermediate spin versions.
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Finally, in Figs. 5 and 6 we compare the AM05 results
with those obtained with LDA and the PBE �Ref. 9� func-
tionals. AM05 gives the same correct ferromagnetic bcc
ground state as PBE while LDA gives the wrong spin state.
Thus, the inclusion of surface physics into AM05 corrects
one of the largest deficiencies of LDA. However, the PBE
lattice constant, bulk modulus, and magnetization are closer
to the experimental values than the corresponding AM05 re-
sults, see Table I. This observation is further discussed in the
next section.

V. CONCLUSIONS

We have discussed several possible versions of the spin
density generalized AM05 functional. One of these versions,
xscss, is found to extend the underlying subsystem functional
framework of AM05 in a natural way, and is therefore pre-
ferred. As a benchmark calculation we have chosen the
ground state of Fe. The different versions of spin AM05 per-
form very similarly and all give the correct spin ground state.
Inclusion of surface physics into AM05 thus corrects a major
failure of LDA, which gives the wrong spin state for this
system. However, the lattice constants are not in as good
agreement with experiment as PBE. Since nonspin AM05
generally is more accurate than PBE for nonmagnetic solid-
state systems,6,8 there are two possible reasons for this. It
might be that Fe just is a problematic case for AM05. But
another possibility is that the excellent performance of
AM05 for nonspin-polarized systems does not directly gen-
eralize to a similar performance for spin-resolved cases when
using spin-AM05. Either due to that the underlying spin for-
mulation of the more approximate correlation part of the
Airy Gas based edge functional in Eq. �2� is not adequate. Or
that magnetic materials are of a different class than nonmag-
netic materials �containing more localized electrons�, which
the interior �uniform electron gas based� and edge �Airy gas
surface system� subsystem functionals included in AM05
cannot adequately describe. The lattice constant and bulk
moduli results of Ropo et al.7 indicate that the deficiency is
not only for Fe but more general for 3d metals. If so, the
minimal differences in results between the different versions
of AM05 discussed in Sec. II, shown in Figs. 3 and 4, and
Table I, indicate that a change in the correlation of the edge

functional in Eq. �2� would not result in a large change in
lattice constant, and thus not cure this deficiency. However,
other properties than lattice constants, bulk moduli, and mag-
netizations should also be considered, in particular properties
that more closely probe differences in energy between non-
spin and spin phases of solids. The most striking difference
between the PBE and AM05 results shown in Fig. 5 is the
slope of the spin-resolved fcc curve, and properties probing
this should be investigated. Future applications of spin-
AM05 will show which of the scenarios discussed above is
the correct one. If AM05 turns out to generally be less accu-
rate for spin-polarized systems than for nonspin-polarized
systems, the next functional constructed according to the
subsystem functional scheme should address this deficiency.

TABLE I. Lattice constants, bulk moduli, and magnetizations,
for the ground-state bcc phase, obtained with the spin version of
AM05, and the three intermediate versions. Experimental values are
taken from Ref. 25.

Version
Lattice constant

�Å�
Bulk modulus

�GPa�
Magnetization

��B�

xtctt 2.783 222 2.127

xscst 2.784 220 2.140

xsctt 2.785 220 2.143

AM05 �xscss� 2.786 218 2.148

Experiment 2.86 168 2.22

PBE 2.83 185 2.20
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FIG. 5. �Color online� Energy vs volume for NM and FM phases
of bcc and fcc iron, calculated using LDA, AM05, and PBE.
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APPENDIX A: DETAILS OF THE CALCULATIONS
(CF. REF. 26)

We implemented the spin version of AM05 and the three
intermediate versions into version 5.1.40 of VASP, which al-

ready had nonspin AM05 implemented. We used cubic cells
for both the bcc �two atoms� and fcc �four atoms� phases, and
16�16�16 k points in the Monkhorst-Pack scheme.27 The
PAW potentials are standard, the PBE one is labeled “PAW-
_PBE Fe 06Sep2000,” and the LDA one “PAW Fe
03Mar1998.” A cutoff energy of 350 eV was used in all
calculations. For the spin-resolved calculations an initial
magnetic moment of 4�B on each site was used. The lattice
constants and bulk moduli presented in Table I, and the cor-
responding PBE results are calculated by a fit of seven
energy/volume pairs, spaced evenly �10% around the equi-
librium volume, to the Murnaghan28 equation of state. The
magnetization was subsequently calculated at the obtained
minimum-energy point by a separate VASP 5 calculation that
also served as a control so that the energy obtained in this
point indeed was lower than in the previously calculated
points. Our PBE results compares well with the PW91 re-
sults of Ref. 25, as do our PBE and xscst results for lattice
constant and bulk moduli with those of Ropo et al. �Ref. 7�.
The calculations for some of the intermediate spin versions
converged slowly in the range where the magnetization
changes rapidly with lattice constant. The results in this re-
gion are sensitive to initial conditions; this can be seen in
Fig. 4 in that some of the curves are jagged. Even though the
magnetization in this region might be less accurate than in
other regions, the general trend is not affected.

APPENDIX B: IMPORTANT FORMULAS AND
BACKGROUND INFORMATION FOR IMPLEMENTING

SPIN AM05 INTO DFT CODES

The exchange-correlation energy for a spin-polarized sys-
tem can be written as

Exc =� drfxc„n↑�r�,n↓�r�,�n↑�r�,�n↓�r�… , �B1�

where n↑�r� and n↓�r� are the densities of spin-up electrons
and spin-down electrons at r, respectively, dr=drxdrydrz is
the volume element, and fxc= fx+ fc is the exchange-
correlation energy density. fxc is generally a functional of the
spin-up and spin-down densities, fxc= fxc�n↑�r� ,n↓�r��. We
here restrict ourselves to the case where the functional de-
pendency is only through the densities and gradients of the
densities since this is the case for AM05 �see Eq. �14�� and
most other GGA-type functionals.

In this appendix we will explicitly describe how to obtain
the potentials given in Eq. �23�, needed for self-consistent
calculations. In addition, in some codes, the stress tensor is
calculated and a functional routine also needs to output some
ingredients for this calculation. The stress tensor is

�� = 
��Exc�n�r�� + �
�=↑,↓

� drVxc,��r�� �n���̂,r�
����

�
�̂=0

− �
�=↑,↓

� dr
� fxc�n↑�r�,n↓�r�,�n↑�r�,�n↓�r��

�� �n��r�
�r�

�
�n��r�

�r�

.

�B2�

The terms on the first line of this expression are handled as
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FIG. 6. �Color online� Magnetization vs volume for the FM
phases of bcc and fcc iron, calculated using LDA, AM05, and PBE.
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in any LDA calculation, only replacing Exc, Vxc,↑, and Vxc,↓
with the corresponding GGA quantities. They will not be
further discussed here. The terms on the second line consti-
tutes a GGA correction and we will explain how to obtain the
needed functional related ingredients for this correction.

The exchange-correlation potential, Eq. �23�, for the
exchange-correlation energy in Eq. �B1� is

Vxc,��r� =
� fxc„n↑�r�,n↓�r�,�n↑�r�,�n↓�r�…

�n��r�

− � ·
� fxc„n↑�r�,n↓�r�,�n↑�r�,�n↓�r�…

��n��r�
. �B3�

The first term in this potential is straightforward to obtain but
the second term can be treated in several ways. In the tradi-
tional scheme this term is expanded until derivatives of the
densities and derivatives of fxc are separated. This means that
for a given density the full Vxc,� can be calculated within the
functional routine. In contrast, the White and Bird, and
Pople, Gill, and Johnson schemes only partially expand this
term and Vxc,� needs to be assembled in a routine outside of
the functional subroutine.

Let us focus on the second term in Eq. �B3� for the mo-
ment. It is a scalar product between two vector quantities, �

and
�fxc�n↑�r�,n↓�r�,�n↑�r�,�n↓�r��

��n��r� . In a plane-wave basis this second
term is readily Fourier transformed:

� ·
� fxc„n↑�r�,n↓�r�,�n↑�r�,�n↓�r�…

��n��r�

=
1

N
�
G,r�

iG ·
� fxc„n↑�r��,n↓�r��,�n↑�r��,�n↓�r��…

��n��r��

�eiG·�r−r��, �B4�

this is the White and Bird scheme.21

In quantum chemistry codes using finite basis sets ��

��=1, . . . ,N�, the Fock matrices are the needed objects and
by integration by parts, one obtains

� � ·
� fxc„n↑�r�,n↓�r�,�n↑�r�,�n↓�r�…

��n��r�
����dr

= −� � fxc„n↑�r�,n↓�r�,�n↑�r�,�n↓�r�…
��n��r�

· �������dr ,

�B5�

this is the Pople, Gill, and Johnson scheme.22

It is obvious that since the two terms in Eq. �B3� are not
treated in the same way in the White and Bird, and the Pople,
Gill, and Johnson schemes, the exchange-correlation poten-
tial �or Fock matrices� needs to be assembled outside of a
functional subroutine and that this subroutine, instead of the
full Vxc,↑ and Vxc,↓, needs to output

�fxc�n↑,n↓,�n↑,�n↓�
�n↑

and
�fxc�n↑,n↓,�n↑,�n↓�

��n↑
, and the corresponding spin-down quantities,

where we from now on will omit the spatial argument of the
densities.

However,
�fxc�n↑,n↓,�n↑,�n↓�

��n↑
is a vector and together with its

spin-down counterpart gives a total of six different scalar

quantities to calculate. Due to the fact that functionals of
GGA type for symmetry reasons only depend on the gradi-
ents of the densities through their absolute values, ��n↑�,
��n↓�, and ��n�, where n=n↑+n↓, only three scalar quantities
are actually needed. Note that since ��n�2= ��n↑�2+ ��n↓�2
+2�n↑ ·�n↓� ��n↑�2+ ��n↓�2, the dependency on the two
vector quantities �n↑ and �n↓, needs to be replaced by a
dependency on three scalar quantities. It is customary to use
��n↑�, ��n↓�, and ��n� in the traditional and the White and
Bird schemes while ��n↑�2, ��n↓�2, and �n↑ ·�n↓ are used in
the Pople, Gill, and Johnson scheme.

One can show that

� fxc�n↑,n↓,�n↑,�n↓�
��n�a

= 2
� fxc�n↑,n↓, ��n↑�2, ��n↓�2,�n↑ · �n↓�

� ��n�a
�2

� n�a

+
� fxc�n↑,n↓, ��n↑�2, ��n↓�2,�n↑ · �n↓�

��n↑ · �n↓
� n�b

�B6�

=
� fxc�n↑,n↓, ��n↑�, ��n↓�, ��n��

� ��n�a
�

�n�a

��n�a
�

+
� fxc�n↑,n↓, ��n↑�, ��n↓�, ��n��

� ��n�
�n

��n�
, �B7�

where the first equality �Eq. �B6�� gives the quantity that
is usually seen in the Pople, Gill, and Johnson scheme
and the second equality �Eq. �B7�� is seen in the White
and Bird scheme, and �a=↑ or ↓, and �b denotes the opposite
spin from �a.

�n↑
��n↑�

,
�n↓

��n↓�
, and �n

��n� are unit vectors that are
well defined even when ��n↑�, ��n↓�, or ��n�→0, respec-
tively, and those factors can be handled elsewhere in the
code, and

�fxc�n↑,n↓,��n↑�,��n↓�,��n��
���n↑�

,
�fxc�n↑,n↓,��n↑�,��n↓�,��n��

���n↓�
, and

�fxc�n↑,n↓,��n↑�,��n↓�,��n��
���n� can be given out from the functional sub-

routine. However, there is no consensus in codes about this
matter and care needs to be taken in order to make sure that
the right quantities are output.

The AM05 subroutine provided at the AM05 website19

gives output for the White and Bird scheme:
�fxc�n↑,n↓,��n↑�,��n↓�,��n��

�n↑
,

�fxc�n↑,n↓,��n↑�,��n↓�,��n��
�n↓

,
�fxc�n↑,n↓,��n↑�,��n↓�,��n��

���n↑�
,

�fxc�n↑,n↓,��n↑�,��n↓�,��n��
���n↓�

, and
�fxc�n↑,n↓,��n↑�,��n↓�,��n��

���n� . If instead the Pople, Gill, and Johnson
output is needed it can be obtained from these quantities by
using that

2
� fxc�n↑,n↓, ��n↑�2, ��n↓�2,�n↑ · �n↓�

� ��n↑�2

=
1

��n↑�
� fxc�n↑,n↓, ��n↑�, ��n↓�, ��n��

� ��n↑�

+
1

��n�
� fxc�n↑,n↓, ��n↑�, ��n↓�, ��n��

� ��n�
, �B8�
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2
� fxc�n↑,n↓, ��n↑�2, ��n↓�2,�n↑ · �n↓�

� ��n↓�2

=
1

��n↓�
� fxc�n↑,n↓, ��n↑�, ��n↓�, ��n��

� ��n↓�

+
1

��n�
� fxc�n↑,n↓, ��n↑�, ��n↓�, ��n��

� ��n�
, �B9�

� fxc�n↑,n↓, ��n↑�2, ��n↓�2,�n↑ · �n↓�
��n↑ · �n↓

=
1

��n�
� fxc�n↑,n↓, ��n↑�, ��n↓�, ��n��

� ��n�
. �B10�

This same output can also be used in calculations of the
GGA correction for the stress tensor in Eq. �B2�. The terms
on the second line of Eq. �B2� constitutes the GGA correc-
tion and it can be shown that

�
�=↑,↓

� fxc�n↑,n↓,�n↑,�n↓�

�� �n�

�r�
�

�n�

�r�

= �
�=↑,↓

2
� fxc�n↑,n↓, ��n↑�2, ��n↓�2,�n↑ · �n↓�

� ��n��2
�n�

�r�

�n�

�r�

+
� fxc�n↑,n↓, ��n↑�2, ��n↓�2,�n↑ · �n↓�

��n↑ · �n↓

�� �n↑

�r�

�n↓

�r�

+
�n↓

�r�

�n↑

�r�
� �B11�

= �
�=↑,↓,0

� fxc�n↑,n↓, ��n↑�, ��n↓�, ��n��
� ��n��

1

��n��
�n�

�r�

�n�

�r�

,

�B12�

where n0=n=n↑+n↓, and we again have given the Pople,
Gill, and Johnson �Eq. �B11��, and the White and Bird �Eq.
�B12�� relevant formulas. We recognize the same derivatives
of fxc as appear in Eqs. �B6� and �B7�.

In the traditional scheme the second term in Eq. �B3� is
further expanded using Eq. �B7�:

� ·
� fxc�n↑,n↓,�n↑,�n↓�

��n�

= �� ·
�n�

��n��� � fxc�n↑,n↓, ��n↑�, ��n↓�, ��n��
� ��n��

+ �� ·
�n

��n�� � fxc�n↑,n↓, ��n↑�, ��n↓�, ��n��
� ��n�

+
�n�

��n��
· ��

� fxc�n↑,n↓, ��n↑�, ��n↓�, ��n��
� ��n�� �

+
�n

��n�
· ��

� fxc�n↑,n↓, ��n↑�, ��n↓�, ��n��
� ��n� � .

�B13�

It is straightforward to show that

� ·
�n�

��n��
=

�2n�

��n��
−

�n� · ���n��
��n��2

for � = ↑,↓,0,

�B14�

and the two last terms in Eq. �B13� can also be further ex-
panded by using that

�g�n↑,n↓, ��n↑�, ��n↓�, ��n��

= �n↑
�g

�n↑
+ �n↓

�g

�n↓
+ ���n↑�

�g

� ��n↑�
+ ���n↓�

�g

� ��n↓�

+ ���n�
�g

� ��n�
. �B15�

However, the final general formula would be very cumber-
some and we thus now leave generality and instead make use
of specific dependencies existing in GGA-type functionals,
focusing on the AM05 functional.

The exchange terms in AM05 are only dependent on ei-
ther spin-up or spin-down densities. This is also the case for
GGA exchange in general. The dependency of the correlation
part of the spin-dependent AM05 functional is fc
= fc�n↑ ,n↓ , ��n↑��+ fc�n↑ ,n↓ , ��n↓�� while, for example, PBE
has another dependency: fc= fc�n↑ ,n↓ , ��n��. It follows from
Eqs. �B13�–�B15� that all these forms give, for �=↑ and ↓,

� ·
� f�n↑,n↓, ��n���

��n�

= ��2n�

��n��
−

�n� · ���n��
��n��2 � � f�n↑,n↓, ��n���

� ��n��
+

�n�

��n��
· � �

�=↑,↓
�n�

�2f�n↑,n↓, ��n���
�n� � ��n��

+ ���n��
�2f�n↑,n↓, ��n���

� ��n��2 �
= �2n�� 1

��n��
� f�n↑,n↓, ��n���

� ��n�� � + �
�=↑,↓

�n� · �n�

��n��
�2f�n↑,n↓, ��n���

�n� � ��n��

+ �n� · ���n��
�

� ��n��� 1

��n��
� f�n↑,n↓, ��n���

� ��n�� � , �B16�
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when �=� or 0, and 0 if � is the opposite spin to �. We have
here suppressed the index denoting exchange and correla-
tion. For the exchange, one of the terms in the sum over spin
up and spin down will vanish since the exchange part of the
functional only depends on one spin and thus the cross-spin
derivative will be zero. The density gradient �n� ·�n� is a
function only of ��n��, �=↑, ↓ ,0, which can be made ex-
plicit by using that �n↑ ·�n↓= ���n�2− ��n↑�2− ��n↓�2� /2.

We notice that derivatives of the functional and deriva-
tives of the densities no longer are intermingled but sepa-
rated and if the density derivatives �2n� and �n� ·���n�� are
handled into a functional routine in addition to the already
required �↑, �↓, and ��n��, the two exchange-correlation po-
tentials can be assembled. Note that even if the quantity
�n� ·���n�� looks complicated it is easily shown that

�n� · ���n�� =
1

��n���i=1

3

�
j=1

3
�n�

�ri

�n�

�rj

�2n�

�ri � rj
, �B17�

where r1=rx, r2=ry, and r3=rz.
In the following more detailed manipulations, we will

only treat AM05, leaving, for example, the derivation of the
PBE correlation potentials as an exercise. For ease we divide
up the AM05 exchange-correlation energy density in Eq.
�14� in separate exchange and correlation parts:

fx�n↑,n↓, ��n↑�, ��n↓��

=
1

2
�fx

LDA�2n↑�Hx�s↑� + fx
LDA�2n↓�Hx�s↓�� , �B18�

where fx
LDA�n�=n�x

LDA�n� is the LDA exchange energy den-
sity, and

fc�n↑,n↓, ��n↑�, ��n↓��

= fc
LDA�n↑,n↓�� n↑

�n↑ + n↓�
Hc�s↑� +

n↓
�n↑ + n↓�

Hc�s↓�� ,

�B19�

where fc
LDA�n↑ ,n↓�= �n↑+n↓��c

LDA�n↑ ,n↓� is the LDA correla-
tion energy density.

Using that

�s�n,�n�
�n

= −
4

3

s

n
, �B20�

�s�n,�n�
� ��n�

=
1

2kFn
, �B21�

we obtain from Eq. �B18�

� fx�n↑,n↓, ��n↑�, ��n↓��
�n�

=
� fx

LDA�2n��
��2n��

Hx�s�� − fx
LDA�2n��

4

3

s�

2n�

�Hx�s��
�s�

= vx
LDA�2n��Hx�s�� −

4

3
�x

LDA�2n��s�

�Hx�s��
�s�

, �B22�

and

� fx�n↑,n↓, ��n↑�, ��n↓��
� ��n��

= fx
LDA�2n��

1

2kF,��2n��
�Hx�s��

�s�

=
�x

LDA�2n��
2kF,�

�Hx�s��
�s�

, �B23�

where kF,�=kF�2n��, vx
LDA�2n�� is the LDA spin-� exchange

potential, and �x
LDA�2n�� is the LDA spin-� exchange energy

per particle.
Using Eq. �B19� we obtain

� fc�n↑,n↓, ��n↑�, ��n↓��
�n�a

=
� fc

LDA�n↑,n↓�
�n�a

 n↑
�n↑ + n↓�

Hc�s↑� +
n↓

�n↑ + n↓�
Hc�s↓�� + fc

LDA�n↑,n↓�

�� �1 −
n�b

�n↑ + n↓�
�

�n�a

Hc�s�a
� +

� n�b

�n↑ + n↓�
�

�n�a

Hc�s�b
�� + fc

LDA�n↑,n↓�
2n�a

�n↑ + n↓�

�Hc�s�a
�

��2n�a
�

= vc,�a

LDA�n↑,n↓�
1

�n↑ + n↓�
�n↑Hc�s↑� + n↓Hc�s↓�� + �c

LDA�n↑,n↓�
n�b

�n↑ + n↓�
�Hc�s�a

� − Hc�s�b
��

−
4

3
�c

LDA�n↑,n↓�s�a

�Hc�s�a
�

�s�a

, �B24�

where �b is the opposite spin to �a, and

� fc�n↑,n↓, ��n↑�, ��n↓��
� ��n��

= fc
LDA�n↑,n↓�

2n�

�n↑ + n↓�
�Hc�s��

� ���2n���
=

�c
LDA�n↑,n↓�

2kF,�

�Hc�s��
�s�

, �B25�
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where vc,�
LDA�n↑ ,n↓� is the LDA spin-� correlation potential

and �c
LDA�n↑ ,n↓� is the LDA correlation energy per particle.

The quantities in Eqs. �B22�–�B25� gives the input
needed;

�fxc

�n�a

=
�fx

�n�a

+
�fc

�n�a

, giving Eq. �25�, and
�fxc

���n�a
� =

�fx

���n�a
�

+
�fc

���n�a
� , giving Eq. �26�, in the White and Bird and the Pople,

Gill, and Johnson schemes for constructing the exchange-
correlation spin-�a potential outside of the functional subrou-
tine �see, however, the note below Eqs. �B6� and �B7��.

For the traditional scheme, starting with exchange, we
obtain from Eq. �B16�, Eqs. �B22� and �B23�, and the defi-
nitions in Eqs. �10� and �27�:

� ·
� fx�n↑,n↓,�n↑,�n↓�

��n�

= t��x
LDA�2n��

1

s�

�Hx�s��
�s�

+ vx
LDA�2n��s�

�Hx�s��
�s�

−
4

3
�x

LDA�2n��s�

�

�s�
�s�

�Hx�s��
�s�

�
+ u��x

LDA�2n��
�

�s�
� 1

s�

�Hx�s��
�s�

� . �B26�

In order to reduce the number of different derivatives of
H�s�, we use that

s
�

�s
�s

�H�s�
�s

� − s
�H�s�

�s
= s3 �

�s
�1

s

�H�s�
�s

� + s
�H�s�

�s
,

�B27�

and, from Eqs. �B3�, �B22�, and �B26�, we arrive at the final
form of the exchange part of the spin-� exchange-correlation
potential:

Vx,� = vx
LDA�2n��Hx�s�� − s�

�Hx�s��
�s�

� + �x
LDA�2n��

���4

3
s�

2 − t�� 1

s�

�Hx�s��
�s�

+ �4

3
s�

3 − u�� �

�s�
 1

s�

�Hx�s��
�s�

�� . �B28�

For correlation, by a similar procedure starting from Eqs.
�B24� and �B25� and again using Eq. �B16�, we get

� ·
� fc�n↑,n↓,�n↑,�n↓�

��n�a

= t�a
�c

LDA�n↑,n↓�
1

s�a

�Hc�s�a
�

�s�a

+ �vc,�a

LDA�n↑,n↓� +
�n↑ · �n↓

��n�a
�2

vc,�b

LDA�n↑,n↓�� n�a

n↑ + n↓
s�a

�Hc�s�a
�

�s�a

+ �n�b
−

�n↑ · �n↓

��n�a
�2

n�a� �c
LDA�n↑,n↓�

n↑ + n↓
s�a

�Hc�s�a
�

�s�a

−
4

3
�c

LDA�n↑,n↓�s�a

�

�s�a

�s�a

�Hc�s�a
�

�s�a

�
+ u�a

�c
LDA�n↑,n↓�

�

�s�a

� 1

s�a

�Hc�s�a
�

�s�a

� . �B29�

Using Eqs. �B3�, �B24�, �B27�, and �B9�, we arrive at

Vc,�a
= vc,�a

LDA�n↑,n↓�Hc�s�a
� − s�a

�Hc�s�a
�

�s�a

� + �c
LDA�n↑,n↓���4

3
s�a

2 − t�a� 1

s�a

�Hc�s�a
�

�s�a

+ �4

3
s�a

3 − u�a� �

�s�a

 1

s�a

�Hc�s�a
�

�s�a

��
+ ��c

LDA�n↑,n↓� − vc,�a

LDA�n↑,n↓��
n�b

n↑ + n↓
Hc�s�a

� − Hc�s�b
� − s�a

�Hc�s�a
�

�s�a

�
+ ��c

LDA�n↑,n↓� − vc,�b

LDA�n↑,n↓��
�n↑ · �n↓

��n�a
�2

n�a

n↑ + n↓
s�a

�Hc�s�a
�

�s�a

. �B30�

The total spin-�a exchange-correlation potential, Vxc,�a
=Vx,�a

+Vc,�a
, is given in Eq. �28�.

For implementation into codes also the various s derivatives of Hx�s� and Hc�s� in Eqs. �B22�–�B25�, �B28�, and �B30� are
needed. We will here adhere closely to the notation used in the subroutines provided at the AM05 web page.19 We have

1

s

�Hx�s�
�s

= �1 − X�s��
1

s

�Fx
LAA�s�
�s

+ �1 − Fx
LAA�s��

1

s

�X�s�
�s

, �B31�

1

s

�Hc�s�
�s

= �1 − ��
1

s

�X�s�
�s

, �B32�

and
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1

s

�

�s
�1

s

�Hx�s�
�s

� = �1 − X�s��
1

s

�

�s
�1

s

�Fx
LAA�s�
�s

� + �1 − Fx
LAA�s��

1

s

�

�s
�1

s

�X�s�
�s

� − 2�1

s

�X�s�
�s

��1

s

�Fx
LAA�s�
�s

� , �B33�

1

s

�

�s
�1

s

�Hc�s�
�s

� = �1 − ��
1

s

�

�s
�1

s

�X�s�
�s

� , �B34�

where

1

s

�X�s�
�s

= − 2��X�s��2, �B35�

1

s

�

�s
�1

s

�X�s�
�s

� = 8�2�X�s��3, �B36�

and X�s� is given in Eq. �4�. The derivatives of Fx
LAA�s� are more elaborate. Using the definitions in Eqs. �17� and �18� we

obtain

1

s

�Fx
LAA�s�
�s

=
1

s

c2sD�s� − �cs2 + 1� dD�s�
ds

�D�s��2 =
U�s�

�D�s��2 =
c

�D�s��22 − �1 + cs2�
dA�s�

ds
− �1 − cs2�

A�s�
s
� , �B37�

where A�s� is given in Eq. �19� and dA�s� /ds is given below, in Eq. �B41�. Lastly, using the definition of U�s� on the first line
of Eq. �B37�, we find

1

s

�

�s
�1

s

�Fx
LAA�s�
�s

� =
1

s

dU�s�
ds

D�s� − 2U�s�
dD�s�

ds

�D�s��3

=

− 4cs2D�s��1

s

dD�s�
ds

� + �cs2 + 1��2s2�1

s

dD�s�
ds

�2

− D�s�s
d

ds
�1

s

dD�s�
ds

���
s2�D�s��3 , �B38�

where D�s� is the denominator of Fx
LAA�s� given in Eq. �18�,

and

1

s

dD�s�
ds

= c�dA�s�
ds

+
A�s�

s
� , �B39�

s
d

ds
�1

s

dD�s�
ds

� = cs
d2A�s�

ds2 + �dA�s�
ds

−
A�s�

s
�� .

�B40�

The derivatives of A�s� can be worked out from the defini-
tion in Eq. �19�:

dA�s�
ds

=
dZ�s�

ds
�1 +

3

2
�kZ�s��2�	1 + �kZ�s��2
−3/4,

�B41�

and

s
d2A�s�

ds2 = s
d2Z�s�

ds2 �1 +
3

2
�kZ�s��2�	1 + �kZ�s��2
−3/4

+ �dZ�s�
ds

�2 s

Z�s��3

2
�kZ�s��2 +

3

4
�kZ�s��4�

�	1 + �kZ�s��2
−7/4. �B42�

Finally, the s derivatives of Z�s� can be derived from its
definition in Eq. �21� by using that

dW�x�
dx

=
1

x

W�x�
1 + W�x�

, �B43�

which together with the definition of 	�s� in Eq. �22� gives

dW„	�s�…
ds

=
3

2

1

s

W„	�s�…
1 + W„	�s�…

. �B44�

The final ingredients needed for the implementation of the
AM05 potentials are thus

dZ�s�
ds

=
Z�s�

s

1

1 + W„	�s�…
, �B45�

and, noting that the s times the second derivative of Z�s� at
the first line in Eq. �B42� only will appear together with the
first derivative of Z�s� from Eq. �B41�, see Eq. �B40�,
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s
d2Z�s�

ds2 +
dZ�s�

ds
=

d

ds
s

dZ�s�
ds

�
=

Z�s�
s

1

�1 + W„	�s�…�3�1 −
1

2
W„	�s�…� .

�B46�

The Fortran routine available at the AM05 web page19

consists of several subroutines. The goal has been to provide
a stand-alone AM05 core subroutine that does not need to be
manipulated but all necessary modifications for adaptation to

a specific code should be done in one of several provided
template subroutines. The template routines assemble the re-
quired input to, and modifies the obtained output from, the
AM05 subroutine. The three template routines provided are
examples of adaptations to codes using the White and Bird
scheme, the Pople, Gill, and Johnson scheme, and the tradi-
tional scheme, respectively. Once AM05 has been imple-
mented and tested in this way, subroutines used inside
the AM05 subroutine, such as the LDA exchange and corre-
lation routines, can be replaced with routines already in the
code.
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